conformally Einsteinian - vertaling naar russisch
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:     

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

conformally Einsteinian - vertaling naar russisch

MANIFOLD EQUIPPED WITH A RIEMANNIAN METRIC THAT IS CONFORMALLY FLAT
Conformally flat; Locally conformally flat manifold; Locally conformally flat
  • The upper manifold is flat. The lower one is not, but it is conformal to the first one

conformally Einsteinian      

математика

конформно-эйнштейнов

конформно-эйнштейнов      
adj.
conformally Einsteinian
conformally flat         

математика

конформно-плоский

Definitie

Einstein
['??nst??n]
¦ noun informal a genius.
Origin
the name of the German-born physicist Albert Einstein (1879-1955).

Wikipedia

Conformally flat manifold

A (pseudo-)Riemannian manifold is conformally flat if each point has a neighborhood that can be mapped to flat space by a conformal transformation.

In practice, the metric g {\displaystyle g} of the manifold M {\displaystyle M} has to be conformal to the flat metric η {\displaystyle \eta } , i.e., the geodesics maintain in all points of M {\displaystyle M} the angles by moving from one to the other, as well as keeping the null geodesics unchanged, that means exists a function λ ( x ) {\displaystyle \lambda (x)} such that g ( x ) = λ 2 ( x ) η {\displaystyle g(x)=\lambda ^{2}(x)\,\eta } , where λ ( x ) {\displaystyle \lambda (x)} is known as the conformal factor and x {\displaystyle x} is a point on the manifold.

More formally, let ( M , g ) {\displaystyle (M,g)} be a pseudo-Riemannian manifold. Then ( M , g ) {\displaystyle (M,g)} is conformally flat if for each point x {\displaystyle x} in M {\displaystyle M} , there exists a neighborhood U {\displaystyle U} of x {\displaystyle x} and a smooth function f {\displaystyle f} defined on U {\displaystyle U} such that ( U , e 2 f g ) {\displaystyle (U,e^{2f}g)} is flat (i.e. the curvature of e 2 f g {\displaystyle e^{2f}g} vanishes on U {\displaystyle U} ). The function f {\displaystyle f} need not be defined on all of M {\displaystyle M} .

Some authors use the definition of locally conformally flat when referred to just some point x {\displaystyle x} on M {\displaystyle M} and reserve the definition of conformally flat for the case in which the relation is valid for all x {\displaystyle x} on M {\displaystyle M} .

Vertaling van &#39conformally Einsteinian&#39 naar Russisch